If it's not what You are looking for type in the equation solver your own equation and let us solve it.
w^2=46
We move all terms to the left:
w^2-(46)=0
a = 1; b = 0; c = -46;
Δ = b2-4ac
Δ = 02-4·1·(-46)
Δ = 184
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{184}=\sqrt{4*46}=\sqrt{4}*\sqrt{46}=2\sqrt{46}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{46}}{2*1}=\frac{0-2\sqrt{46}}{2} =-\frac{2\sqrt{46}}{2} =-\sqrt{46} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{46}}{2*1}=\frac{0+2\sqrt{46}}{2} =\frac{2\sqrt{46}}{2} =\sqrt{46} $
| -9x+9=-x+4 | | -5n+4(n-3)+7=-8 | | -22=6+0.66666666667x | | 3m+5=-m-7 | | 7.7q=11+6q | | 4/3n+1-1=3n+10/9 | | k/8.9+81.9=68.8 | | 66=-6(-7+x) | | r+31=-12r+4 | | 0.5x^2-4=14 | | 7=10-g÷2 | | 2(4x-2)+4=24 | | 4=-8+4u | | 0.05x=x-28.5 | | 79.98+0.45X=99.98+0.4x | | -2-0.5x+12=0.3x+6.2 | | -3(3d+10)+6(2d-3)=-36 | | 16(4-3m)=96(-m÷2+1) | | 0.5(y+8)=4y-24 | | -22=6+2/3x | | −8.5x+0.84=−2.56 | | 90+(x-50)=90+x | | 108=12x+36 | | 6(-4m+9)+4m=-20(m+1) | | 4x-270=700 | | 2+3p=-5+2p | | 12x−9= 10x−1510x−15 | | 21(2-3)+12x=44 | | 2x+14+5x=2x-3 | | x+7+2x-1=0 | | 4w=8+8 | | -3(x8)=24 |